D_s production differential cross section

Reinhard Schwienhorst University of Minnesota

Purpose and Goal

 To calculate the number of neutrinos passing through the emulsion target, the x_F and p_T dependence of the D_s production cross section is needed.

Differential cross section

- x_F is the longitudinal momentum fraction
 - particle momentum over maximum particle momentum
- p_T is the momentum perpendicular to the beam axis
- the cross section can be written as

$$\frac{d^2\sigma}{dx_F dp_T^2} \propto e^{-bp_T^2} \left(1 - \left|x_F\right|\right)^n$$

• the parameters b and n are determined by experiments

Method

- The differential cross section has not been measured for D_s, but
 - it has been measured for D_{\pm} and D_0
 - QCD calculations can be used to predict the differential cross section for D_s (Pythia)
- compare proton and pion data
 - consistency check

x_F and p_T² distributions for 350GeV pions

— Pythia
— equation

WA 92
 (350GeV π⁻)

Comparison to predictions

- Next-to-leading-order QCD calculation
 - varying m_c
- Pythia
 - varying m_c
 - includes hadronization

Corrections to data

- Adjust for different fit intervals
- to find the mean, shift to 800GeV

The n parameter

The n parameter for D production

The b parameter for D production

Results

- Once again, the parameters are well known for pion beams
- the exact value depends on the fit range
- NLO QCD and Pythia agree with data
- result for D_s production:
 - $n=(7.4\pm0.6)$
 - $b = (0.94 \pm 0.06) \text{GeV}^{-2}$
 - both are about the same as before but with smaller errors

Conclusion and Outlook

- The shape of the D differential cross section has been measured in several experiments
- it is understood
 - in theory and by experiments
 - for pion and proton beams

• I will study the effect on the neutrino yield